
A Swarm Framework for Teaching Elementary Addition Operations.

Zhengwei Hui, Juan Rojas, Li Lin, HoLeung
Ting, ChenYu Zhao.

Sun Yat Sen University. School of Software
Guangzhou, Guangdong, 510006, China

Abstract— The advent of low-cost, functional robots has pro-
moted swarm robotics research. However, an area of research
that is yet untouched is how these types of robots could aid
in teaching STEM subjects. In particular, there is little work
concerning mathematics at the elementary level. The Kilobot
robot’s size, cost, and functionality offers a good test-bed to
explore its use as a pedagogical tool. This work presents a
swarm framework to teach elementary mathematical addition
operations to children. A state-based synchronous algorithm
was used to enable robots to represent both operands and result
digits in mathematical operations, all the while exploiting the
robots sounds, motion, and illumination to enhance children’s
learning factors. The system is demonstrated in the V-REP
simulation environment to demonstrate the feasibility of the
approach.

I. INTRODUCTION

The advent of low-cost, swarm-like, decentralized but
closely cooperating multi-robot systems has started to grow
in the last decade [1], [2]. Recently, robots like the Kilobots
(“KBs”) [3] and the Droplets [1], have enabled researchers
access useful functionality at low-costs, leading to an in-
crease in size of swarms from tens to hundreds [4]. Swarm
robotics is characterized by simple controllers working to-
gether in a scalable and decentralized manner that exploits
local robot interactions [5]. Swarm robots have been used to
explore collective behaviors as diverse as: collective transport
[6], [7], collective construction [8], exploration [9], path
formations [10], [11], and more.

In terms of robotics in education, there have been a
wide variety of efforts to use robots as an educational tool.
Educational robotics was founded on the learning principles
of constructionism proposed by Papert [12]. In [13], con-
structivist principles were used to engage children to learn
programming through interaction by using the LEGO Tech-
nic kit. Since this time, a great number of robotic initiatives
have been attempted, but only a few, like the FIRST and
RoboCup competitions have been widely successful. Some
research has focused on the development of appropriate
curricula to teach robotics at collegiate levels [14], [15]
and long-term progressive learning framework’s [16]. Others
have examined robotics at the kindergarten level, where a
social robots is used to teach spatial relations like geometrical
thinking [17] or language, logic, and creativity, etc. [18].
However, there seem to be no examples of using robotics to
teach elementary mathematical operations.

Teaching elementary mathematical operations could be
done indirectly through a social robot, however, we are inter-
ested in using the robot’s motions and interactive capabilities

to be the agents of the operations themselves. Having an
adequate robot test-bed is not the only challenge, there are a
wide range of factors that render a robotics-based elementary
mathematical education kit very challenging. One must first
have a pedagogical and appropriately designed mathematical
curriculum; the identification of learning factors that can be
measured and evaluated to determine if the teaching frame-
work is useful and effective, a robot framework and system
that is fit to implement the desired functionality flexibly and
in a scalable manner. These elements are imperative, such
that, as stated in [19], the intrinsic motivation brought about
by the technology will wear off, or even worse, that the
approach will in fact hurt the learning process of the students
and detract students from the subject.

This work focuses on the implementation of a swarm-like
robot system to effect elementary math operations such as
addition in a flexible and scalable and flexible way. Due to
the scope of this work, details on curriculum development,
learning factors, and evaluation will not be considered in this
paper.

To this end, the KB robot was selected as the robot of
choice due to its cost, size, and functionality. Furthermore,
a physical environment for mathematical operations was
designed and named the Teaching Board. A state-based
synchronous algorithm is used to enable the robots to move
according to a given problem and change from operands to
result through motion in math operations. This enables the
children to count the robots as digits, all the while the robots
seek to engage children through its motion, sound, light, and
board placement to enhance a child’s learning factors. The
system is demonstrated in the V-REP simulation environment
[20] to demonstrate the feasibility of the approach.

The paper is organized as follows: in Sec. II, the Kb
robot is introduced, in Sec. III the System Design, namely
the Teaching Board is introduced; in Sec. IV, the driving
algorithm is presented; in Sec. V, the simulation environment
and experimentation is described, and finally in Sec. VI the
Conclusion is presented.

II. THE KILOBOT ROBOT

The Kb is a small (3.3cm diameter) robot designed
for swarm-like collective behaviors. The system is capable
of scalable operations, mobility, neighbor-to-neighbor com-
munication and distance computations, and has sufficient
memory to execute algorithms [6]. In particular, the KB’s
scalable operations allow it to power up, charge, or program

978-1-4799-7396-5/14/$31.00 © 2014 IEEE

hundreds or even thousands of robots in under one minute.
The robot uses differential drive locomotion through two
vibration motors to move in 2 DoF: linearly forward at
speeds of 1cm/s as well as rotate at angular speeds of
π/4 rad/s. Robots communicate through an LED-emitter
and IR receiver at 30kb/s and upto 10cm away. Robots
perform distance computations by measuring the incoming
light intensity.

III. SYSTEM DESIGN

A. The Teaching Board

An arena known as the Teaching Board (TB) was devised
to house all aspects of a mathematical operation for single
digit calculations (one’s digit) including: operands, operator,
result, and a carry number box. A single digit set-up is shown
in the V-REP simulation environment in Fig. 1. Single digit
operations can at time become multi-digit operations and
employ a carry digit in such cases. For instance, 3 ∗ 4 = 12
uses two single digits and yields a double digit result. While
our system is designed to consider multi-digit operations
as a result of a carry number, this paper will not consider
carry operations. Likewise, we will not consider fractions
or negative numbers. The TB consists of counting sections.

Le
ft

 O
p

e
ra

n
d

 B
o

x

R
ig

h
t

O
p

e
ra

n
d

 B
o

x

Result

Box

Selector

Digit

Arbiter

Operator

Unused

Messen-
ger

Robot Roles

Fig. 1. The teaching board for a single digit operation contains a right and
a left operand box at each edge. Each operand box contains 20 Kilobots.
The center area also contains a box for the operation’s result. Also, four
robot roles are shown: Selectors appear in blue, Digits appear in green,
Arbiters appear in red (in-between Digits) and Messengers also in red, can
be located between Selectors or Digits.

Each counting section is designed for single digit operations
and is composed of a result box and two separate counting
boxes–a left and a right operand box. At the outer border
of each operand box twenty KBs sit at their home position
(the number of KBs will be explained later as it relates
to the synchronous communication strategy that we use).
Given that the KBs have a short communication range
(10cm not including it’s radius) and that they can only

communicate with their immediate neighbors, the distance
between adjacent robots is kept to 3.3cm. KBs here represent
the operand digits that form part of an operation. The result
box occupies the counting section’s center area where the
operation’s result is represented by a participating number of
KB digits. We also consider double digit operations without
a carry. Such operations can be the result of: (i) two single
digit addition or multiplication that lead to double digits, like:
6+ 5 = 11 or 3 ∗ 4 = 12, or (ii) double digit operations that
lead to double digit results. For our current system, without
a carry, we can maximally represent a maximum value of 18.
For carry situations, a second counting section is needed. In
general, n counting sections, require n− digit additions or
multiplications and an additional counting section for a carry
or borrow bit. New counting sections are linked through KB
messengers to maintain communication and synchronized
motions in the system (KB roles will be discussed in Sec.
III-B) across counting sections. The operator was chosen to
be represented by a paper note that contains any of the four
operator symbols: {+,−, x, /}.

Given an operation, the KB controller will execute the
calculation and drive the appropriate number of KBs from
the operand boxes to the Results Box. Once that operation
is terminated the KBs return to their home position.

B. Robot Roles

Our system assigns five different roles to the KB robots:
Selectors, Digits, Arbiters, and Messengers.

1) Selectors: There are two Selector robots per counting
section. Selectors stand atop of the left and right count-
ing boxes respectively. They are designed to select the
appropriate number of Digit KB robots according to a
given operation. For example, in a 1+1 operation, the
left Selector chooses one KB Digit robot to represent
the left operand, the same is done for the right Selector
robot.

2) Digits: They exist in both the left and right counting
boxes. They play the role of operand digits in the
TB. A certain number of them, as assigned by the
commander, move towards the Results Box when an
operation is executed. Digit KBs will light up sequen-
tially and beep to indicate that the result execution of
an operation is complete and the student can count the
number of digits in the Results Box. Digits can also
have three types of attributes: (i) they can be Leaders
(of an Operand Box queue), (ii) they can belong to the
Left or the Right Operand groups, and (iii) they can
be associated with Arbiter’s of type A or type B.

3) Messengers: They are message forwarding KBs. Given
that the KB communication range is short, Messengers
pass Selector generated messages through neighboring
KBs in the home position.

4) Arbiters: These KBs send distance messages to the
Digits KBs and assist them in maintaining an orbital
path around the Arbiters. This is a technique we use to
move selected KBs in a synchronized motion. Arbiters

can be classified as type A or type B KBs. This
classification is useful to pair them up with specific
Digit KBs during navigation operations.

5) Operators: These robots declare the type of arithmetic
operation for the Digit KBs.

Note that Operand Boxes consist of a 19 KB queue: 10
Arbiters and 9 Digits between a pair of Arbiter KBs. The
Results Box contains the two selected operand digits and
presents the calculation result. Also 2 Messenger KBs are
placed between the Selectors to bridge communication be-
tween both columns.

C. Robot States

Each of the robot roles presented in the previous sections
has a specific set of states. Each state is constrained to a
single input and a single output. This constraint yields to a
sequential behavior in the robots, leading to simple behaviors
and state transitions even when the number of robots is
increased.

The Selector KBs have 3 states: {WAIT, GATHER and
GO}. In the WAIT state, Selectors await for messages from
the controller. Upon receiving a message its state transitions
to GATHER, at which point the Selectors emit a count
message to Digit KBs that determines the appropriate number
of Digit KBs for the operation in the Operand boxes. This
count message returns to the Selectors. Upon receipt of the
count message, the Selector State transitions to the GO State
and instructs Digit KBs to execute the operation.

The Digit KBs have nine states: {WAIT, GATHER,
GO, STOP, COUNT, CARRY, WAIT OTHER GROUP, RE-
TREAT, STOP}. During WAIT, Digit KBs wait for a
GATHER signal to transition to the GATHER state and select
the appropriate number of Digits. At this point, they wait for
the GO signal at which the Digit KBs move to the Results
Box and stop at an exact location therein. The sequence of
instructions between the Left Operand Box and the Right
Operand Box is not simultaneous but rather sequential. The
left box initially receives the signal and the latter is then
transmitted to the right. When all Digit KBs stop at a pre-
assigned positions, the COUNT state starts, leading Digit
KBs to turn on their LEDs and beep from top-to-bottom and
from left-to-right. If a counting section generates a carry bit,
the Digit KBs transition to a CARRY state and would use
Messenger KBs to pass the Carry signal to the next Counting
Section. After finishing COUNT (-CARRY) state, the Digit
KBs on the left transition to WAIT OTHER GROUP (WOG)
and wait until the right side is ready to also commence the
RETREAT (RET) motion that will drive the KBs to their
home position. Upon reaching the home position, the state
transitions to the STOP state. At this point, the whole process
repeats again for a new commanded operation.

The Arbiter KBs have two states: {FORWARD,
NAVIGATE}. The FORWARD (FWD) state renders Arbiters
into Messenger KBs and simply forward signals. For exam-
ple, when the Digit KBs are gathering, the Selector KBs
will send a count ID to the Digit KBs. If the ID=7, seven

Digit KBs will be selected. Each time a Digit KB is pinged,
the count variable decrease until the ID value is zero. The
NAVIGATE (NAV) state, on the other hand, has Arbiters
emit distance signals to their immediate Digit KB neighbors
to aid in navigation.

The Messenger KBs only have the FORWARD state. They
serve the same role as the same state for the Arbiter KB but
in this case it is used for when a carry bit is generated. In
such instances, the Messenger KBs deliver the carry signal
to the next counting section.

The operator KB has one state, the OPERATOR state. It
is used to determine the arithmetic operation for the Digit
KBs.

As a final note, it is important to clarify, that in or-
der to meet our one-input, one-output constraint, some
states are divided into several sub-states. For exam-
ple, the GATHER state of Digit KBs has three sub-
states:{GATHER1,GATHER2,GATHER3}. The list of sub-
states can be found in Table II-VI.

D. System Progression

In this section, we provide a high-level description of
how the entire system progresses. The system development
can be tracked by primarily following the Digit KBs state
development. These KBs play the primary role in the system.
Their behavior can in turn be abstracted into three general
stages: Prepare, Ready, and Execute. Preparation involves
actions that are being taken by individual KBs. Ready
indicates that all KBs have finished their preparation state
and are ready for execution. And the last stage triggers the
required action. Table I visualizes the sequential progress of
the system which is bootstrapped by the Digit KBs.

TABLE I
SYSTEM PROGRESSION.

Stage Prepare Ready Execute
Gathering Get ID All KBs ready Move
Moving Stop in Results Box All KBs stopped Count
Counting KBs Flash All KBs flashed Carry
Carrying Msg new Count Sec. Digit KB added Retreat
Retreating KBs Retreat All have retreated Wait

E. Robot Signals

KB messages consist of three bytes. We encode these
messages such that the first byte carries data, the second
represents the robot state, and the third represents the sending
robot’s role. KBs can only send and receive only one signal
per state. Table II, gives an example of such representations.
Additionally, the state sequence for each to the KB roles can
be seen in Tables II-VI.

IV. ALGORITHM IMPLEMENTATION

The system implements a stated-based behavior control
algorithm. Each role has its own state set. KBs change
its state according to a received message. For each state,
there is only one acceptable input. Each KB will wait for a

TABLE II
ROBOT SIGNAL REPRESENTATIONS.

Process Code Example Note
WAIT 0 (0,0,3) Digit Waiting.

GATHER 1 (0,1,4) Selector Gathering
MOVE 2 (0,2,3) Digit Going

COUNT 3 (0,3,3) Digit Stopped
CARRY 4 (0,4,3) Digit Counting

RETREAT 5 (0,5,3) Digit Retreating

TABLE III
SELECTOR STATES: (2ND BYTE)

STATE CODE INPUT OUTPUT
WAIT 0 (0,0,3): GATHER (0,0,4)

GATHER 1 - (X,1,4): X operand
GO 2 Abandon

TABLE IV
ARBITER STATES: (2ND BYTE)

STATE CODE INPUT OUTPUT
FWD1 11 (X,1,Y) (X,1,Y)
NAV1 21 (X,3,Y): To FWD2 (0,2,A/B)
FWD2 12 (X,3/4,Y): If 2nd byte=4 to FWD3 (0,3,A/B)
FWD3 13 (X,4/5,Y): If 2nd byte=4 to NAV2 (X,4,A/B)
NAV2 22 - (0,5,A/B)

TABLE V
MESSENGER STATES: (2ND BYTE)

STATE CODE INPUT OUTPUT
FWD1 11 (X,1,Y) (X,1,Y)
NAV 21 (X,3,Y): To FWD2 (0,2,A/B)
FWD2 12 (X,3/4,Y): If 2nd byte=4 to FWD3 (0,3,A/B)
FWD3 13 (X,4/5,Y): If 2nd byte=4 to NAV2 (X,4,A/B)
NAV2 22 (X,0,3/4): To FWD1 (0,5,A/B)

specific message to modify its state, or else continue with
its ongoing operation. In the rest of the section, we will
describe the major stages of the algorithm according to Table
II. Additionally, to see a summary of state transitions, one
can refer to Tables II-VI.

A. The Gathering Stage

The Auto-Decrease-ID Gathering algorithm gathers Digit
KBs that can represent up to two digits for each of the
two operands in elementary mathematical operations. The
algorithm starts by setting the Digit KBs in the WAIT status.
Selectors then send ID messages that represent the operand
digits. For example, Selectors may send a (5, 1, 4) message,
where 5 is the operand, 1 represent the system Gathering
stage, and the 4 tells that the sender is a Selector. Upon
reception Digit KBs transition to the GATHER state. Among
all Digit KBs in an Operand box, the first Digit KB to receive
the ID message will perform three operations: (i) be assigned
as the leader of the queue (Table VI), (ii) change its state to
GATHER2, and (iii) send an (id-1, 1, 3) message to the next
Digit KB.

The Digit KB who get an id from Selector KB. In this
example, when a Digit KB get the (5, 1, 4) message, it will
set its id to 5 and the variable isLeader to TRUE. Then it will
send another gathering message (id-1, 1, 3), which means a

TABLE VI

DIGIT STATES: (2ND BYTE)

State Code Input Output Leader Behavior

WAIT 0
(0,0,4):To GATHER1 (X,Y,Z).
If X>0: To GATHER1

(0,0,3) -

GATHER1 11 (X,1,Y): Id = X, to GATHER2
(0,0,4):

Others to GATHER1
Y=4, isLeader=Yes

GATHER2 12 (0,1,X): To GATHER3 (id-1,1,3) -

GATHER3 13 (0,2,3): To Go (0,1,3) if(isLeader==T): to Go

GO 2
Move & stop at given location:
To STOP

(0,2,3) -

STOP 3 (X,3,Y): If X=0, to COUNT1. If X >0: (id-1,3,3) if(isLeader==T): Output=(id,3,3)

COUNT1 41 (X,4,Y): To COUNT2 (0,3,3)
if(isLeftLeader==T): to COUNT2
if(isRightLeader==T): to WOG2

COUNT2 42 (0,4,X): To COUNT3 (id-1,4,3) -

COUNT3 43 (X,5,Y): To RET -

if isLeftLeader==T): to WOG1
if(isRightLeader==T): (0,5,3)
if(isLeader==N): (0,4,3)

WOG1 44 (X,5,3): To RET (100,4,3) -

WOG2 45 (100,X,Y): To COUNT2 - -

RETREAT 51

To middle of Arbiter A,B.
1st time:,To RET2.
2nd time: To WAIT

(0,5,3) -

RETREAT2 52 Move out of Results Box - -

Digit KB send a gathering message with data byte equals to
4. This is how the message codes work.

Digit KBs in GATHER2 wait for a message of (0, 1, X)
and keep sending (id-1, 1, 3). If (ID-1) is greater than zero,
the next Digit KB will change to GATHER2 and get an
ID. The gathering process continues until ID decrements to
1. The next Digit KB in GATHER1 isn’t activated and the
previous KB in GATHER2 changes to state GATHER3. The
message then flows from the queue’s tail to the Selector.
Upon reception, the latter sends a GO signal that helps Digits
to transition to MOVE.

B. The Navigation Stage

Prior to the GO message, Arbiter KBs are in the FOR-
WARD1 state and act as communication bridges between
Digit KBs. During the FORWARD1 state, Arbiters simply
relay ID messages down the operand queues. However,
when Arbiters receive the GO signal, they change to the
NAVIGATE1 state and begin emitting distance signals. At
the intersection of the Arbiter’s Navigate state and the Digit’s
GO state, these two KBs form a connection based on an
ID-type to assist in the localization of the Digit robots.
Both Arbiters and Digits can take on two classifications:
type A bots or type B bots. A-type Digits will simply orbit
around A-type Arbiters, and B-type digits will do so with
B-type navigators. Furthermore, Digit KBs will constantly
monitor the distance between itself and the closest Arbiters.
A pre-designed STOP location for each KB in the Results
Box in the TB is assigned such that when Digit KBs reach
that position, they stop and transition to the STOP state. In
the STOP state, Digit KBs synchronize their stop position.
Leading Digit KBs send an (id, 3, 3) message out and non-
leading Digits analyze the (X, 3, Y) message. If X == 0,
they change their state to COUNT1. This continues until all

active Digit KBs have switched to the COUNT1 state.

C. The Counting Stage

When the desired Digit KBs are centered in the Results
box, a visual counting sequence begins to help children
visualize the operations result. The counting process will
have Digit KBs both bleep and blink their LED’s starting
the the left operand group and then continuing with the right
operand group. Also, in this description the CARRY stage is
not presented, so after the COUNTING stage, the RETREAT
stage will proceed.

In the COUNT state, there are three sub-states:
COUNT1&2&3 and two WAIT OTHER GROUP states. The
process begins with the left operand bots. In COUNT1,
all non-lead Digits must exit the STOP state. They are
waiting for an (X, 4, Y) message before they transition.
The Digit KB leader is the first to accept this message,
which in turn makes the robot count by beeping and blinking.
Afterwards the KB transition to COUNT2 and sends an ID-1
message to the rest of the active Digits in COUNT1. In the
next time-step, the leading Digit also sends a Count End
signal to active Digits and transition to COUNT3. When
all left Digits are reach COUNT3, the left leader changes
to WAIT OTHER GROUP1 and blocks all processes by
sending a unique data byte message (100, 4, 3) except for a
retreat message (X, 5, Y). This waiting period is also useful
for children to count the resulting digits in the Results box.

Meanwhile, the right operand box is blocked in state
COUNT1. The right leader will automatically change state
to WAITOTHERGROUOP2, which waits for a (100, X, Y)
message, after which it begins the count sequence and bliking
and moves to COUNT2. Here too, non-leading Digits count
like the ones in the left group. The the last Digit KB sends
an (0, 4, 3) message driving the right group to COUNT3.
The right leader then sends an (0, 5, 3) message to start the
retreating process. The retreat messages is transmitted to the
left operand box KBs through Messengers.

D. The Retreat Stage

The next state is the Retreat strategy. The crucial point of
this state is to determine where to stop the KBs. As the Digit
KBs orbit about the Arbiters, the Digits can compute a pair
of distance measurements (through their light intensity): one
comes from the A-type or B-type original pairing and the
other is from an established adjacent Arbiter.

Given a pair of distance value, we cant know how much
time it will take for the KB to reach the STOP distance
threshold. For example, if we consider the distance between
the Digit and the farthest Arbiter to be less than 51mm (a key
distance in detecting stop points), the Digit KB wont always
stop correctly. That particular distance may occur numerous
times. A second threshold is required and one that leads to
state RETREATE2. The condition to change to RETREATE2
is for the distance to the distant Arbiter to be less than
51mm. On the other hand, the condition to change from state
RETREATE2 back to RETREAT1 is that the distance to the

distant Arbiter is greater than 60mm. The latter will drive
the Digit KB out of the critical boundary value and judge
the 51mm threshold again. The Digit KBs will stop when
they match the threshold the second time. When the Digit
KBs have reached their original position, they will transition
back to the WAIT state and the calculation is finished.

V. EXPERIMENTS

Kb robots where simulated in the V-REP environment. The
V-REP simulator is a flexible and general purpose simulator
with an integrated development environment. V-REP uses
a distributed control architecture, where each object can be
controlled via embedded scripts, plugins, ROS nodes, remote
API clients, or custom solutions. Furthermore, controllers
can be written in C/C++, Python, Java, Lua, Matlab, Octave
or Urbi [20].

To test the basic functionality of the system, four addi-
tion operations were implemented, some of which required
single-digit results and some which required double-digit
results. We also varied the total KB number used in the TB,
to evaluate the performance. The first two additions used a
total of 43 KBs, the third demo, we use the same operation
but reduce the total number of kilobots to 23. Finally, in
the last operation we increase the number of KBs to an
intermediate number to a total of 27 KBs. As part of our
monitoring, we recorded four sets of time: the total duration
of the operation, the selection process duration, the counting
process duration, and the retreating process duration.
Addition 1: 9 + 7 = 16
The first operation used 9 Digits and 10 Arbiters in the Left
Operand Box, and 7 Digits and 8 Arbiters in the Right
Operand Box. As well as 2 Selectors, 2 Messengers, 1
Operand robot (not visualized), and 4 passive Kbs for a total
number of 43 KBs (see Fig. 2). The operation took a total
of 413 seconds (Selecting Time: 16 secs, Counting Time: 42
secs, Moving Time: 320 secs). Fig 2 depicts a sequence of
snap shots of the operation.
Addition 2: 3 + 5 = 8
The second operation used 3 Digits and 4 Arbiters in the
Left Operand Box, and 5 Digits and 6 Arbiters in the Right
Operand Box. As well as 2 Selectors, 2 Messengers, 1
Operand robot (not visualized), and 20 passive Kbs for a
total number of 43 KBs. The total duration for the operation
was 336 seconds (Selecting Time: 21 secs, Counting Time:
19 secs, Moving Time: 280 secs).
Addition 3: 3 + 5 = 8
In this third addition, we modify the total number of KBs
used and reduce that number to 23. By eliminating passive
KBs from the framework, all time durations diminished. The
total duration for the operation was 162 seconds (Selecting
Time: 11 secs, Counting Time: 9 secs, Moving Time: 140
secs).
Addition 4: 2 + 2 = 4
The last operation, increase the number of KBs to an
intermediate range and tried an addition operation with fewer
number of Digit KBs, namely 2+2 = 4. This operation used
2 Digits and 3 Arbiters in both Operand Boxes along with 2

W
A
IT G
O

CO
U
N
T

RETREAT

Fig. 2. The above figure shows the WAIT, GO, COUNT, and RETREAT
stages of the addition 9+7=16 operation. The left operand box mobilizes 9
Digit KBs, the right operand box mobilizes 7 Digit KBs. The Results Box
contains 16 Digit KBs that count off with blinking and beeping.

Selectors, 2 Messengers, 1 Operand robot (not visualized),
and 12 passive Kbs for a total number of 27 KBs. The total
duration for the operation was 189 seconds (Selecting Time:
5 secs, Counting Time: 3 secs, Moving Time: 180 secs).

In effect, operations with fewer digits compute their Se-
lection process and Counting process more quickly. However
these two durations are negligible compared to the Moving
Time process. In simulation, the latter is dominated by the
total number of KBs located in the operand boxes. There is a
linear relation between the KB number and the total duration.
When we reduced the total number of KBs from 43 to 23
for the 3 + 5 = 8 operation, the total duration diminished
roughly 50% as well: from 336 secs to 162 secs.

VI. CONCLUSION

This work presented a swarm framework to teach elemen-
tary mathematical addition operations. The Kilobot robot was

selected as it’s size and functionality also meet absorbability.
A state-based synchronous algorithm was used to enable
robots to represent the left and right operand digits in an
operation and then navigate to represent Result digits. The
system contemplates factors to engage young students and
enhance a child’s learning factors.

REFERENCES

[1] J. Edwards, “Next-generation robots offer sophisticated mobility, ma-
nipulation, and sensing capabilities [special reports],” Signal Process-
ing Magazine, IEEE, vol. 30, no. 5, pp. 11–13, 2013.

[2] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal,
“Kilobot: A low cost robot with scalable operations designed for
collective behaviors,” Robotics and Autonomous Systems, vol. 62,
no. 7, pp. 966–975, 2014.

[3] R. Platt, F. Permenter, and J. Pfeiffer, “Using bayesian filtering to
localize flexible materials during manipulation,” IEEE Transaction on
Robotics, vol. 27, no. 3, pp. 586–598, 2011.

[4] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable
robot system for collective behaviors,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
3293–3298.

[5] D. Miner, “Swarm robotics algorithms: A survey,” Report, MAPLE
lab, University of Maryland, 2007.

[6] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and
R. Nagpal, “Collective transport of complex objects by simple robots:
theory and experiments,” in The 2013 Intl Conf on Aut Agents and
Multi-Agent Systems, 2013, pp. 47–54.

[7] W. v. Holland and W. F. Bronsvoort, “Assembly features in model-
ing and planning,” Robotics and computer-integrated manufacturing,
vol. 16, no. 4, pp. 277–294, 2000.

[8] K. C. Galloway, R. Jois, and M. Yim, “Factory floor: A robotically
reconfigurable construction platform,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
2467–2472.

[9] J. A. Rothermich, M. İ. Ecemiş, and P. Gaudiano, “Distributed
localization and mapping with a robotic swarm,” in Swarm Robotics.
Springer, 2005, pp. 58–69.

[10] J. McLurkin and J. Smith, “Distributed algorithms for dispersion in
indoor environments using a swarm of autonomous mobile robots,”
in Distributed Autonomous Robotic Systems 6. Springer, 2007, pp.
399–408.

[11] S. Hettiarachchi and W. M. Spears, “Moving swarm formations
through obstacle fields.” in IC-AI, 2005, pp. 97–103.

[12] S. Papert, The children’s machine: Rethinking school in the age of the
computer. Basic Books, 1993.

[13] M. Resnick, S. Ocko, et al., LEGO/logo–learning through and about
design. Epistemology and Learning Group, MIT Media Laboratory,
1990.

[14] D. Rus, “Teaching robotics everywhere,” Robotics & Automation
Magazine, IEEE, vol. 13, no. 1, pp. 15–94, 2006.

[15] N. Correll, R. Wing, and D. Coleman, “A one-year introductory
robotics curriculum for computer science upperclassmen,” Education,
IEEE Transactions on, vol. 56, no. 1, pp. 54–60, 2013.

[16] N. C. Lye, K. W. Wong, and A. Chiou, “Framework for educational
robotics: a multiphase approach to enhance user learning in a com-
petitive arena,” in Edutainment Technologies. Educational Games and
Virtual Reality/Augmented Reality Applications. Springer, 2011, pp.
317–325.

[17] G. Keren, A. Ben-David, and M. Fridin, “Kindergarten assistive
robotics (kar) as a tool for spatial cognition development in pre-school
education,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 1084–1089.

[18] M. Fridin, “Storytelling by a kindergarten social assistive robot: A
tool for constructive learning in preschool education,” Computers &
Education, vol. 70, pp. 53–64, 2014.

[19] A. Chiou, “Teaching technology using educational robotics,” in Pro-
ceedings of The Australian Conference on Science and Mathematics
Education (formerly UniServe Science Conference), vol. 10, 2012.

[20] M. F. E. Rohmer, S. P. N. Singh, “V-rep: a versatile and scalable robot
simulation framework,” in Proc. of The International Conference on
Intelligent Robots and Systems (IROS), 2013.

	Previous Menu
	Search
	Print

	ROBIO14PageNumber:
	0:
	10505695909409607: 1027
	6975561705204344: 1028
	956665967021532: 1029
	1992509473037638: 1030
	21909080965804018: 1031
	3693053343581174: 1032

	TL1:
	0:
	42659087208356494: Proceedings of the 2014 IEEE

	TL2:
	0:
	34479379652600606: International Conference on Robotics and Biomimetics

	TL3:
	0:
	7290122065550182: December 5-10, 2014, Bali, Indonesia

